Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator
نویسندگان
چکیده
*Correspondence: [email protected] 1Luleå University of Technology, Luleå, 971 87, Sweden 2Narvik University College, P.O. Box 385, Narvik, 8505, Norway Full list of author information is available at the end of the article Abstract We consider the q-analog of the Riemann-Liouville fractional q-integral operator of order n ∈ N. Some new Hardy-type inequalities for this operator are proved and discussed.
منابع مشابه
Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملNew inequalities for a class of differentiable functions
In this paper, we use the Riemann-Liouville fractionalintegrals to establish some new integral inequalities related toChebyshev's functional in the case of two differentiable functions.
متن کاملFractional Hermite-Hadamard type inequalities for n-times log-convex functions
In this paper, we establish some Hermite-Hadamard type inequalities for function whose n-th derivatives are logarithmically convex by using Riemann-Liouville integral operator.
متن کاملOn Pólya–szegö and Chebyshev Types Inequalities Involving the Riemann–liouville Fractional Integral Operators
In this paper, we investigate some new Pólya-Szegö type integral inequalities involving the Riemann-Liouville fractional integral operator, and use them to prove some fractional integral inequalities of Chebyshev type, concerning the integral of the product of two functions and the product of two integrals. Certain special cases are also considered. Finally, examples for constructing the boundi...
متن کاملHardy-type inequalities for integral transforms associated with Jacobi operator
We establish Hardy-type inequalities for the Riemann-Liouville and Weyl transforms associated with the Jacobi operator by using Hardy-type inequalities for a class of integral operators.
متن کامل